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Pulsed-wire measurements of the streamwise mean velocity and Reynolds stress, mean
and fluctuating surface shear stress, and other statistics have been made in a sharp-
edged turbulent separation bubble formed behind a normal flat plate mounted on
the front of a long splitter plate, covering nearly a decade range of low Reynolds
number. The streamwise Reynolds stress increases appreciably with Reynolds number,
from a level comparable with that in an isolated plane mixing layer to more than
twice that level, while the change in the mean flow is at most slight. It is inferred
using previous measurements that the other stresses do not change as much, thereby
leaving the mean flow relatively unaffected. The mean wall shear stress and the r.m.s.
of the (streamwise) fluctuations decrease in fixed proportion with increasing Reynolds
number. Normalized p.d.f. distributions of velocity and wall shear stress do not change,
except in the vicinity of the secondary separation bubble. At low Reynolds number
the development length of the overlying mixing layer is an appreciable proportion
of the bubble length, the development length being a function of the momentum
thickness at separation. It is argued that the observed changes with Reynolds number
in the bulk of the flow arise primarily as a result of a change in response of this layer
to the fluctuating rates of strain imposed by the recirculating flow; at a low Reynolds
number the response of the shear layer structures to the fluctuating rates of strain
is less than it is at a high Reynolds number. As a consequence of the sensitivity to
fluctuating strain rates the structure of the layer differs fundamentally from that of
an isolated mixing layer.

The measurements help to reconcile previous measurements in this flow geometry
which otherwise appear to be inconsistent. Moreover, in most of the previous mea-
surements the flow width was not sufficient for end effects to have been negligible,
most noticeably in the near-wall flow, where such effects are largest.

1. Introduction
Numerous experimental studies of nominally two-dimensional turbulent separated

flow have been made, the most popular simple geometry being the backward-facing
step. Imposing two-dimensionality is of course intended to reduce the degree of
complexity without losing essential features of the separated and reattaching flow.
The central region of such flows should therefore be free of any significant effects of
the flows in the adjacent ‘side’ or ‘end’ regions. However, it is a matter of experiment
as to how wide the flow should be in order for these end effects to be insignificant
in all key respects, and it is clear that some features are more easily influenced
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Urhf/ν × 103 hf/D W/hf XA/hf W/XA Side plates

Ruderich & Fernholz (RF) 14 0.09 23 17.2 1.3 No
Castro & Haque (CH) 11 0.06 19 19.2 1.0 Yes
Jaroch & Fernholz (JF) 14 0.022 63 25.0 2.5 No
Hancock & McCluskey (HM) 1.6 0.008 174 26.4 6.4 No
Hancock & Castro (HC) 1.8 0.014 20–80 25.3 0.8–3.2 Yes
Hancock (1999) 1–3.4 0.008 165 28.9 5.7 No
Present large fence 15 0.022 63 25.9 2.5 No
Present small fence 2–13 0.011 127 31.7 4.0 No

Table 1. Parameters for the various flow measurements discussed. Note that in this table the
reference velocity, Ur , is as defined in the various studies, and not as redefined here.

than others. End effects can be avoided by using axisymmetric flows, though such
arrangements have some not insignificant practical drawbacks. Of course, an implicit
assumption for either planar or axisymmetric flows is that two-dimensional mean
flow is indeed possible. Other than some random organisation the only alternative is
a periodic cellular structure, though there is no evidence for such a structure in the
present type of flow.

The measurements in the study here have been made in the separation bubble
behind a flat plate normal to the oncoming flow, and mounted symmetrically at the
front of a ‘splitter’ plate. Detailed measurements of the turbulence structure in this
type of flow have been made by Ruderich & Fernholz (1986), Castro & Haque (1987),
Jaroch & Fernholz (1989) and Hancock & McCluskey (1997), hereafter abbreviated
as RF, CH, JF and HM, respectively. Salient parameters are given in table 1, where
XA is the distance to attachment, W is the flow width, and D is the half-height of
the wind tunnel. In the terminology of Bradshaw & Wong (1972) the present type of
flow is an ‘overwhelming’ perturbation.

In the first two cases of table 1 the flow width was about one bubble length, and it
is clear, particularly from the first, that the influence of the side regions was significant
in several respects, one example being the surface streamlines. The experiments by
JF were therefore made in a wider flow, of about 2.5 bubble lengths, though they
found the flow to be still significantly influenced by the side regions. Moreover, the
levels of all the Reynolds stresses were much higher than had been measured in the
previous studies, by a factor of roughly two or more, from which they inferred that
a larger flow width would lead to still higher levels of Reynolds stress, before end
effects ceased. In contrast, the measurements of HM in a flow which was six bubble
lengths in width gave Reynolds stress levels near attachment that were about half
those measured by RF. All of these measurements were made using broadly identical
pulsed-wire techniques at the Universities of Berlin and Surrey. Despite these large
differences the mean flow features show little variation (e.g. figure 2a). Taking account
of the fact that the mean flow is dependent on gradients of the Reynolds stresses,
such large differences in the stresses contradict the near constancy in the mean flow,
unless the differences in the stress gradients are such as to have only a relatively small
net effect on the mean momentum. The purpose of the measurements reported here
was to reconcile the measurements of RF, JF, CH, HM and also Hancock & Castro
(1993), hereafter denoted by HC.

While it is obvious that flow width and the nature of the endwall boundary
layers must be significant parameters, at least when the width is small, the strong
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dependence suggested by comparing the results of RF, JF and HM, particularly the
non-monotonic behaviour, is not supported by the evidence from HC. Employing end
plates to vary the flow width, HC found that the effect on the streamwise Reynolds
stress, u2, was significant only when the aspect ratio, W/XA, was less than about
unity, implying that u2 would not have been much affected in the studies of RF and
CH, even though the flow width cannot have been unimportant near the surface (e.g.
the surface streamlines of RF). This lack of dependence on flow width casts further
doubt on the measurements of JF, which were also questionable on the grounds that
the stress levels are unduly large (H. H. Fernholz, private communication) and do
not agree well with hot-wire measurements made at the edge of the bubble. Other
parameters that are either known to, or are likely to, affect the flow include blockage,
Reynolds number, and residual unsteadiness or turbulence in the free stream. The
measurements of RF, JF and CH were made at comparable Reynolds numbers, while
those of HM and HC were made at a Reynolds number an order of magnitude
smaller so as to achieve a high flow width, which necessitated a small fence height.
A drawback of pulsed-wire anemometry is that the maximum velocity is limited by
probe size, a smaller probe having a smaller maximum roughly in proportion to its
size which, with the necessity to keep probe size in relation to the flow as small as
possible, limits the maximum velocity. It appeared therefore that, amongst the factors
which in principle have influence, the Reynolds stresses must depend significantly on
Reynolds number. Indeed, the flow visualization of RF shows a significant change of
turbulence structure over the Reynolds number range in question.

The present measurements were made in the rig of JF, using both the original fence
and a new, smaller fence, with the purpose of resolving the discrepancies outlined
above. The height of the new fence was chosen as a compromise between providing
a flow wide enough to be free of end effects, covering the required Reynolds number
range, a usable velocity range in the wind tunnel, and available pulsed-wire probes
of a size suited to the size of the bubble. The width of the bubble behind the new
fence was four bubble lengths, which was just about large enough for end effects to
have been negligible. These new measurements show a systematic increase in u2 with
Reynolds number, concurring with the measurements of RF, CH, HM and HC at the
respective Reynolds numbers. Other components of the Reynolds stress tensor were
not measured because of the very limited time available for these measurements, but
it is argued later that u2 is affected more than the other stresses. At low Reynolds
numbers in particular there is no reason to suppose that the Reynolds stresses should
remain in fixed proportion independent of Reynolds number; indeed the evidence
from various flows is to the contrary.

In this type of separated flow the boundary layer upstream of separation is very
thin, and far too thin to be measured without special instrumentation. However, as
will be seen, its size is not unimportant. An approximate calculation of its overall
and momentum thicknesses at separation, δo and θo, can be made by supposing the
external velocity to vary linearly from the stagnation point to a level implied by the
pressure just downstream of the fence. Applying the Falkner–Scan analysis leads to
θo/Hf ≈ 0.27(UrHf/ν)

−1/2, where Hf is the half-height of the fence front face, and
Ur is the free-stream velocity. It follows that the Reynolds number based on the
momentum thickness at separation, Urθo/ν, is given by Urθo/ν ≈ 0.27(UrHf/ν)

1/2,
implying a range of Urθo/ν from ∼10 to ∼35 for the present measurements. It is
appropriate to compare the outer part of the bubble with a mixing layer, as has
been done previously, by for example Eaton & Johnston (1981), RF, CH and HM.
However, virtually none of the measurements available were made for mixing layers
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originating from a boundary layer at such a low Reynolds number. One such set
of measurements is that of Lasheras, Cho & Maxworthy (1986), but the data are
of limited streamwise extent in a two-stream mixing layer and contain the effects of
the near wake. Therefore, a few measurements were also made in a mixing layer of
Reynolds number comparable to the above range.

2. Experimental apparatus and measuring techniques
The separation-bubble measurements were made in the low-speed wind tunnel of

the Hermann–Föttinger Institut, which has a working section width and height of
2.0 m × 1.4 m, respectively. The splitter plate, which was 10 mm thick and 2 m long,
was mounted vertically in the centre of the working section with its upstream edge
about 5 m from the contraction exit, as employed by JF. The original fence had a
height, hf of 22.0 mm above the splitter plate surface, making an overall fence height,
2Hf , of 54 mm. The new fence, employed for the bulk of the measurements, had
a height (hf) of 11.0 mm above the splitter plate surface and therefore an overall
height of 32 mm. For probe calibration purposes the fence was removed and replaced
with a profiled leading edge. A reference Pitot static probe was placed well above
the separation bubble, and second reference Pitot static probe was placed near the
contraction exit as in JF. A reference static pressure on the splitter plate surface was
also taken at 510 mm from the fence. The free-stream velocity (at the reference point
above the bubble) was varied between 1.6 m s−1 and 16.4 m s−1.

The pulsed-wire probe was supported from the ‘underside’ of the plate, and passed
through one of the instrumentation ports placed at intervals along the centreline. The
first port on the centreline was 44 mm from the fence front face, and the remainder
were at intervals of 50 mm. Further details are given by JF. Profiles were measured at
the stations nearest to x/XA = 0.25, 0.5, 0.75, 1.0 and 1.25, with most nearest to 0.5
and 1.0 behind the smaller fence.

Standard pulsed-wire velocity probes of the type described by RF, CH and JF
were used for some of the measurements behind the larger fence, the remainder
being made with ‘miniature’ pulsed-wire probes identical to those used by HC and
HM. For the smaller fence only the miniature probes were employed. These had
pulsed- and sensor-wire lengths of about 6 mm, and a distance between pulsed- and
sensor-wire of about 0.7 mm, that is, about half the dimensions of the standard probe.
The pitch and yaw responses were in excess of ±80◦, and ±70◦, respectively. For
some of the probes the sensor wires were offset as described by CH, although there
were no significant differences in the measurements from these and the other probes.
There was no significant difference between the measurements behind the larger fence
from the standard and miniature probes, their relative sizes implying the miniature
probes were also adequately small for the flow behind the smaller fence. The errors
arising from incomplete cosinal response are discussed by Castro & Cheun (1982),
where they indicate that the error in u2 should be better than ±10% for the present
measurements.

One of the problems with pulsed-wire velocity measurements is that tight wires
usually lead to high levels of ‘strain-gauge’ noise generated by mechanical vibration
from the turbulence itself, or from the wind tunnel. The best remedy, as established
by Bradbury & Castro (1971), is to make a small kink at one end of each sensor wire
and preferably the pulsed wire also, because this transmits vibration as it is pulsed.
Alternatively, and more easily, slightly loose wires can be used (Jaroch 1985), but
these leave some uncertainty in the reliability of the calibration, though in none of
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the measurements made in the present work did wire looseness account for anything
like the high level of u2 measured by JF. All the measurements presented here were
made with kinked wires held in slight tension.

Two wall shear-stress probes were employed, each having sensor-wire lengths, l, of
about 0.5 mm, giving luτ/ν not exceeding about 15, where uτ is the friction velocity.
The probe with the larger wire height of 90 µm was used at the lower Reynolds
numbers because a greater height is then permissible, and because the signal strength
from the 50 µm height probe was too small. In the region of overlap the two probes
gave equal measurements. The yaw response of this type of probe is very closely
cosinal, to an angle better than ±85◦. One of the difficulties encountered in spanning
the present Reynolds number range is that a change of one order of magnitude in
free-stream velocity implies, all else constant, a change of two orders of magnitude
in mean wall shear stress. Such a range, together with the high intensity of the
fluctuations, is demanding of pulsed-wire anemometry, although some alleviation of
the required calibration range is given by the decrease in wall shear stress with
increase in Reynolds number. The probes were calibrated against Preston tubes
in a zero-pressure-gradient turbulent boundary layer using the calibration of Patel
(1965). Pressures were measured using a Baratron temperature-compensated pressure
transducer, having a resolution of 0.01 Pa.

Nearly all the pulsed-wire measurements were made using a PELA-Flow Instru-
ments anemometer unit and LabView-based software written at Surrey and run on a
Macintosh computer interfaced via a National Instruments LabNB board. The cali-
brations for velocity and shear stress were mostly fitted to third-order polynomials,
namely

U, τw = A+ B
1

T
+ C

1

T 2
+ D

1

T 3
, (1)

where T is the instantaneous time of flight; it was generally found better not to
require A to be zero. Some measurements were also made using the HFI version of
the anemometer unit and associated software run on an Atari-type computer; the
two systems gave identical results. In order to ensure satisfactory accuracy two sets
of calibrations were made, one for the full velocity or shear stress range and the
other for a lower range, the latter giving a better fit at lower velocities or wall shear
stress. One or other calibration for each sensor was selected (prior to measurement,
not dynamically) according to the range of the positive and negative fluctuations.
Departures between the ‘true’ velocity or wall shear stress and the calibration curves
were negligible.

There is a level of velocity and shear stress below which pulsed-wire anemometry
cannot measure because even in the absence of a timer limitation (which in practice
may or may not occur first) thermal diffusion reduces discrimination of the heat trace.
However, it is possible to make a correction for this ‘blind zone’ by interpolation
across the ‘hole’ on the probability density function (p.d.f.). The p.d.f. was recorded
for each measurement and a two-piece linear interpolation was made so as to preserve
the area under the p.d.f. The resulting adjustments were in fact negligible, except for
the reverse-flow fraction, where the error arises largely because of the ambiguity in
sign of undetected traces. Typically 80 bins were used for the p.d.f., though some
given here have been smoothed to 20 bins.

As shown by Castro, Dianat & Bradbury (1987) and Dengel, Fernholz & Hess
(1986) the effect of the finite length of the shear stress probe wires (as opposed
to zero length) is to reduce the probe’s sensitivity to shear stress fluctuations as a
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Figure 1. Variation of attachment length with blockage. �, RF; �, HM; 4, CH; O, JF; +, HC;
×, Hancock (1999); ◦, present, small and large fences. Line from Smits (1982).

consequence of spatial averaging, the net effect on the mean level being negligible.
Castro et al. advise that luτ/ν should be less than 30, based on measurements in a zero-
pressure-gradient turbulent boundary layer. Pessimistically, their measurements imply
that the error for the present probe will not have exceeded 8%. However, Hancock
(1999) concluded that the error beneath a separated flow must be significantly less
because the fluctuations are predominantly large-scale fluctuations arising from the
‘inactive’ motion (Townsend 1976) imposed by the intense outer-layer structures (see
also Fernholz 1994). The present errors will have been considerably less than the
above estimate, therefore.

The mixing layer measurements were made in a 0.6 m × 0.3 m blower wind tunnel
at the University of Surrey. The mixing layer was formed on a 20 mm or 40 mm long
plate held just above the contraction-exit boundary layer which was bled off beneath
the plate. Measurements were made using a digitally linearized, single-wire, hot-wire
anemometer, driven by a Dantec DO1 anemometer unit. The free-stream speed was
varied between 2.5 m s−1 and 5 m s−1, and the velocity profiles at the separation point
showed very good agreement with the Blasius profile, to a deviation better than 1%
of the free-stream velocity. Data acquisition was achieved using a similar system to
that used for the pulsed-wire anemometry.

3. Results and discussion
3.1. Preliminary matters

Unless otherwise stated, the reference velocity for previous measurements has been
redefined to that used here, namely the free-stream velocity above the position of
attachment. In some instances a large adjustment has been made, but no sensible
comparison would be possible without such a redefinition; no information is lost by
it, of course.

Figure 1 shows the effect of blockage on attachment length, XA, for the present and
previous measurements, together with the variation from Smits (1982; see also CH).
XA is the distance to attachment on the flow centreline, and the term ‘attachment’
is used in this paper in preference to the term ‘reattachment’ because although the
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Figure 2. Profiles of (a) U and (b) u2 at x = XA. �, RF; �, HM; ◦, present, large fence.

flow reattaches the separating streamline is only a reattaching streamline if the flow is
genuinely invariant with lateral position, z. As noted in the Introduction the widths
of most of the sets of measurements discussed here were too small for the bubbles
to have met this condition. The attachment lengths given in table 1 were not in all
cases confirmed by an equal length on the ‘underside’, and although the models were
all nominally parallel with the upstream flow, some caution should be attached to XA

when comparing it with hf . In the present case symmetry could not be employed as
a test because the instrumentation plugs protruded on the underside of the splitter
plate. The flaps at the rear of the splitter plate were left in one position, though
ideally they would have been set each time the fence was changed so as to give a
preferred attachment length. For the smaller fence XA is 20% larger than it was for
HM, and 10% larger than that from Smits (1982) and from Hancock (1999), but, as
will be seen from the consistency of the measurements presented later, there is no
reason to believe that this difference is of any material significance.

The first of the present measurements were made downstream of the original
fence with conditions as identical as possible to those of JF. The wall shear stress
measurements agreed very well with their results, which gave an XA of 570 mm as
opposed to 549 mm here, i.e. within 4%. Figure 2 shows U and u2 near attachment,
where U is the mean velocity in the free-stream direction. U is quite comparable with
that measured by JF (not shown); u2 by contrast is very close to that measured by RF
and therefore very much less than measured by JF. Measurements were made with
several probes with various degrees of wire tightness and condition and a number
of threshold settings and sensor-wire currents, using both the PELA-Flow and HFI
instruments, but it was not possible to obtain the levels of u2 measured by JF. In fact
the largest departure at attachment was no more than about 10% higher than given
in figure 2(b), and no explanation for the much higher levels reported by JF could be
found.

The bubble behind the larger fence was slightly thicker than that behind the smaller
fence, after scaling on bubble length or fence height. HC found that if the aspect
ratio is less than about 2 the bubble height in the centre is larger than in a wider
flow, the main effect being an outward displacement of the free shear layer as inferred
from the displacement of the profile of the streamwise velocity, U. The profile of
u2 is displaced by a similar amount, but with little change in shape and negligible
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Figure 3. Variation of u2
max with x/XA. �, RF; �, HM; 4, CH; +, HC; ◦, present, large fence.

change in magnitude. This displacement effect is less marked in RF (e.g. figure 2a)
even though the aspect ratio is less than half that of the present large-fence flow. It
is supposed that these differences are a consequence of the relatively thick boundary
layers on the working section walls owing to the distance of the flow rig from the
contraction exit, and the relatively thin boundary layers in the case of RF, their fence
having been close to the contraction exit. The measurements behind the smaller fence
are consistent with the flow having been wide enough for end effects to have been
negligible.

Figure 3 shows the streamwise development of the maximum in u2, u2
max , according

to the measurements of RF, CH, HM and HC, the present measurements concurring
with those of RF. Two noteworthy points come from this figure and figure 2. First,
although the blockage in the experiment of RF was much larger than here, and the
bubble height and length markedly less (by about 35%), the shapes of the profiles
of U and u2 are very similar when normalized by the bubble length, with very
close maxima in u2. This concurrence underlines the established view that it is the
attachment length rather than the fence height that provides the primary scale of the
bubble, if the fence height is relatively small. The second point, the issue of primary
concern here, is that the difference between the measurements of HM and HC and
the remainder of the measurements in these two figures is seen over two-thirds of
the bubble, the marked departure taking place between roughly 0.2XA and 0.4XA.
The measurements of CH differ significantly near and after attachment, though there
is no clear reason why there should be such a difference. A possible explanation is
offered shortly.

The outer free shear layer part of a separation bubble is at least in simple terms
a mixing layer subjected to an extra rate of mean strain arising from curvature of
the mean streamlines, and to fluctuating rates of strain imposed on the ‘low-speed’
side by the fluid entrained from near attachment. (HM argue that curvature effects
should be small in the outer part.) This connection leads to a velocity scale for the
shear layer as being the maximum velocity difference, ∆U, across the bubble, where
∆U = Umax − Umin, disregarding the near-wall layer where the viscous constraint
dominates. Inconsistently, in previous work, the near-wall layer has not been ignored
in forming the velocity difference downstream of attachment, where the minimum in
U(y) is zero, of course. A consistent and more sensible velocity difference, ∆U ′, is given
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Figure 4. Variation of ∆U/Ur (closed symbols) and ∆U ′/Ur (open symbols) with x/XA.
Symbols as in figure 3.

by ∆U ′ = Umax−Ui, where Ui is the velocity just outside the near-wall layer. Upstream
of attachment Ui is taken as Umin (so that ∆U = ∆U ′) while downstream Ui is judged
as the velocity where the gradient is negligible in terms of the velocity variation in
the near-wall layer. Such a definition of an ‘edge velocity’ is of course approximate,
as is the definition upstream of attachment (where there is also an external velocity
gradient), but a more exacting definition would not differ significantly in consequence
in the present context. Figure 4 shows ∆U/Ur and ∆U ′/Ur , where it is interesting to
note that ∆U ′/Ur continues to decrease at the same rate after attachment as before, in
contrast to ∆U/Ur , which shows an abrupt change. It should perhaps be mentioned
that Ui was not selected so as to give the linear variation seen in this figure, or to
force any of the other inferences drawn later. The maxima in u2 normalized by ∆U
and by ∆U ′ are shown in figure 5, where a very different behaviour is portrayed
beyond attachment, u2 continuing to rise when normalized by ∆U ′. Interestingly,
the measurements of CH as given in figure 5(b) are much closer to those of RF† and
the present measurements. In that u2/∆U ′2 is formed entirely from one measurement
source, namely the pulsed-wire probe, this closeness does suggest some sort of error
in the measurements of CH that is not apparent when u2 is normalized by ∆U ′2. (This
figure lacks the two points between x/XA = 1.1 and 1.3, because Ui is not available

for these stations.) u2
max/∆U

2 in a developed plane mixing layer is about 0.029.

3.2. Wall pressure and shear stress

The distance to attachment, XA, varied only a small amount with free-stream velocity,
as shown in figure 6, though for reasons given earlier this should not be taken as
an indication of how attachment length varies with Reynolds number. Indeed, none
of the available data suggest a significant variation over the present range. Here, XA

was within ±4% of 349 mm. Figure 7 shows the variation of the surface pressure
distribution, Cp, with x/XA. Cp is defined as Cp = 2(p − po)/ρU2

o , where po is the
surface pressure downstream of attachment (at about 1.5XA), and Uo is a notional
free-stream velocity based on po and the free-stream total pressure. Ur/Uo is 1.06.
The variation of Cp with Reynolds number is at most slight and confined to the

† Data in figures 18 and 20 of RF are inconsistent for x/XA > 1.2. Present data from H. H.
Fernholz, private communication, are consistent with figure 18.
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Figure 6. Variation of attachment length with reference velocity, downstream of the small fence.

lowest Reynolds number, and is consistent with the mean flow features remaining
very nearly constant.

Figure 8 shows the mean wall shear stress coefficient, Cf , and the coefficient of the
r.m.s. of the shear stress fluctuations, C ′f , defined as 2τw/ρU

2
r and 2τ′w/ρU2

r , where τw
and τ′w are the mean shear stress and r.m.s. of the fluctuation, respectively. Clearly, the
magnitude of the wall stress decreases markedly as the Reynolds number increases,
and this is shown again in figure 9 in terms of the peak negative mean wall stress.
CH observed a similar trend with a very similar form of distribution, though their
corresponding levels are considerably higher than here (where their data have been
adjusted to the same reference velocity as that used here). The measurements of RF
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are also larger by about the same factor while the measurement of JF (as confirmed
here) is much closer to the trend with the small fence. As discussed further later, the
substantial discrepancy in figure 9 is an effect of flow width, where the higher wall
shear stress at low aspect ratio is a consequence of differences in the near-wall flow,
rather than errors in measurement. The present Cf are very close to the measurements
of Hancock (1999) in a wider flow of W/XA = 5.7 (very nearly identical to that of
HM), as shown in figure 9, consistent with the view that the present flow was about
wide enough for end effects to have been negligible. (In Hancock’s flow a width in
excess of 1.4XA was free of significant end effects, as inferred from measurements of
wall shear stress.)

The variation of Cf with Reynolds number seen here is comparable with that of
Jovic & Driver (1995, see also Le, Moin & Kim 1997) in a separation bubble behind
a rearward-facing step. Moreover, the dependence here explains the large Cf seen in
the direct numerical simulations of Le et al. (1997) – namely that Cf increases with
decreasing Reynolds number. A further point about figure 8 is the longer secondary
separation bubble and the slightly earlier occurrence of the peaks in Cf and C ′f at the
lowest Reynolds number. The latter is presumably connected with the slightly earlier
rise in Cp.

The fluctuating shear stress normalized by the (negative) peak level of the mean
shear stress, |Cfmin |, is shown in figure 10. As can be seen, these collapse closely to a
single curve apart from a slight departure at the lowest Reynolds number. The lack
of any departure in the vicinity of the secondary separation is perhaps surprising
because presumedly in this region the distance to secondary separation is also a
relevant length scale. However, the conclusion of Hancock (1999) that the surface
fluctuations are predominantly a result of large-scale motion in the outer flow explains
the lack of dependence on the length of the secondary separation bubble. In addition,
Hancock showed that the mean and fluctuating shear stresses are not directly linked,
so the constancy in figure 10 is therefore notable. C ′f/|Cfmin | as measured by RF is
comparable with that here, while JF obtained levels that were roughly 25% larger.
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Figure 10. C ′f normalized by the peak negative mean shear stress. Symbols as in figure 7.
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The reverse-flow fraction for the wall shear stress, χτw , defined as

χτw =

∫ 0

−∞
p(τw) dτw, (2)

where p(τw) is the probability density function of the (x-direction) wall shear stress,
and where the integral over all τw is unity, is shown in figure 11. In this definition,
τw is the instantaneous total wall shear stress in the x-direction, as measured directly
by the pulsed-wire probe. Two immediate observations are that downstream of about
x/XA = 0.4, there is no significant change with Reynolds number, and that χ is very
close to 0.5 at attachment. There is no obvious reason why the reverse-flow fraction
should be equal to one-half at the point where the mean wall shear stress is zero,
though very nearly all measurements show it to be so. Upstream of x/XA = 0.4 there
is a clear variation with Reynolds number, where the position of secondary separation
in figure 8(a) again compares closely with χ = 0.5. The shape of p(τw), scaled on τ′w ,
also does not change with Reynolds number, as shown for example in figure 12, for
x/XA ≈ 0.55, where in this figure τw is taken with respect to the mean level. The
case at the lowest Reynolds number differs from the others near where the total wall
stress is zero (i.e. near where τw/τ

′
w = +1.03) but this difference is consistent with the
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inaccuracy in the probe calibration at the lowest levels; at higher levels the differences
are negligible, suggesting the p.d.f. as a whole is unchanged at the lowest Reynolds
number in this figure.

The behaviour of the near-wall layer is more appropriately described in terms
of the ‘free-stream’ velocity, Ui, near its edge and its development length from the
attachment position. Several workers have demonstrated that for the reverse flow
this comparatively thin layer behaves in a viscous-dominated manner (e.g. Adams &
Johnston 1988; Devenport & Sutton 1991; Dianat & Castro 1989). Figure 13 shows
the present measurements and those of RF, JF and CH, where Cf is now defined as
2|τw|/ρU2

i and the Reynolds number as Ui|XA − x|/ν. This figure also includes some
measurements downstream of attachment where, at least not too far from attachment,
the near-wall layer must have some similarities with that beneath the recirculating
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Figure 14. Profiles of (a) U and (b) u2 at x = XA. ◦, Urhf/ν × 10−3 = 2.0; +, 2.3; ×, 2.7; 4, 3.5;
�, 4.6; �, 6.7. Small fence.

flow. Upstream of attachment, the measurements exhibit a slope closely equal to
−1/2, except near the attachment position itself, where the gradient is steeper. If
Ui and XA were both precisely independent of Reynolds number then a variation
of Cf as (Ui(XA − x)/ν)−1/2 would imply a variation of Cf = 2|τw|/ρU2

r according
to (Urhf/ν)

−1/2. However, as can be seen from figure 9, the present measurements
do not follow this form of variation. The mean flow cannot therefore be entirely
independent of Reynolds number, and indeed it is to be expected that Ui would
depend upon how far the near-wall layer grows into the flow above. (The layer is too
thin for its thickness to be determined accurately from the data being considered here.)
Downstream of attachment Cf varies in a different manner presumably reflecting the
different pressure gradient.

A further point from figure 13 is that the various measurements either side of
attachment are very much closer together than are the measurements in figure
9, independent of aspect ratio. In that the quantities employed in figure 13 are
appropriate to the near-wall layer the agreement between the various sets gives
confidence in the accuracy of the measurements in each case, implying that the
differences seen in figure 9 are indeed a genuine effect of aspect ratio. The effects of
low aspect ratio are therefore substantially larger on the wall shear stress and the
near-wall flow than they are on the outer flow, as inferred from HC, the present results
implying that W/XA should be about 4 for end effects to be negligible (figure 9). The
sensitivity of the near-wall flow arises, at least in part, because its low momentum
means it is relatively easily influenced by the residual lateral pressure gradient (see
JF) imposed by the outer flow.

3.3. Mean velocity and Reynolds stress

Figure 14 shows U and u2 at x/XA = 1, where the variation of u2 with Reynolds
number is about its largest. The small but noticeable variation in U in this figure
arises because of the slight variation in XA in relation to the fixed instrumen-
tation positions. By contrast, u2 changes significantly over the relatively small change
in Reynolds number in this figure, the change being predominantly one of change of
magnitude, the shape remaining about constant.

The variation in u2 can be summarized conveniently in terms of its maximum, as



116 P. E. Hancock

0.10

0.04

0.02

0 4 8 12

Ur hf /ν ×10–3

0.08

0.06

16 20

u2
max

U2
r

|τwmin
|

(u2
max)x/XA =1

Figure 15. Variation of u2
max/U

2
r with Urhf/ν. �, RF; �, HM; 4, HC; Present: ◦, small fence,•́, large fence. Open symbols, x/XA = 0.5. Closed symbols, x/XA = 1. The figure also shows +,

|Cfmin |/(u2
max/U

2
r )x/XA=1.

shown in figure 15, for x/XA = 0.5 and 1, where it can be seen that the present
variation agrees very well with the measurements of HM, HC and RF. This variation
is strongest at the lowest Reynolds number and suggests, as would be expected,
that u2

max remains constant at high Reynolds number. The agreement with previous
measurements is important in a number of respects. The agreement with HM and
HC confirms that the flow was wide enough for end effects not to have affected U or
u2 in the bulk of the bubble. The agreement is an example of how the dependence of
the flow on blockage and other parameters (e.g. a small, non-zero circulation around
the plate) is of no consequence in the immediate context of the Reynolds-number
dependence of u2. The agreement with RF gives confidence in at least some features
of their measurements as representative of a two-dimensional flow. Therefore, it is
clear from this figure that the variations seen in the earlier measurements, as shown
in figures 1, 3 and 5, are primarily a dependence on Reynolds number. Figure 15
also shows |Cfmin | normalized by u2

max at attachment, which is seen to decrease with
increasing Reynolds number. Given the near constancy in figure 10 it follows that
C ′f normalized by u2

max at attachment decreases in a similar manner; u2
max is not a

scale for C ′f , therefore (though Hancock 1999 shows C ′f to be determined largely by
outer-flow structures, uncoupled from the mean wall stress, Cf).

The growth of a mixing layer can be defined in terms of the maximum velocity gra-
dient, (∂U/∂y)max , normalized by a characteristic velocity difference. Previous workers
have used a gradient (or ‘vorticity’) thickness, L, defined by L = ∆U/(∂U/∂y)max ,
whereas, for the reasons cited earlier, the definition preferred here is the thickness, L′,
defined by L′ = ∆U ′/(∂U/∂y)max , where upstream of attachment L and L′ are equal,
of course. Figure 16 shows both L and L′ for the present and previous measurements.
Until about x/XA = 0.7 the thickness grows linearly at a rate comparable with that
of a plane mixing layer (e.g. Johnson & Hancock 1991). The reduction in growth rate
of L′ near and after attachment as opposed to the decrease and subsequent increase
of L over and above that in the earlier part of the bubble adds to the appropriateness
of using L′ in preference to L because a lower growth rate downstream of attachment



Low Reynolds number separated turbulent flow 117

0.3

0.01

0 0.5 1.0 1.5

x/XA

0.2

L
XA

L′

XA

Figure 16. Gradient thicknesses, L (closed symbols) and L′. �, RF; �, HM; +, HC; Present:◦, small fence, 4, large fence, all Reynolds numbers. Full line is growth rate of plane mixing layer,
0.186. Broken line is growth rate of 0.145.

0.15

0.05

0 0.2 0.4 0.6

χu

0.10

0.8 1.0

y
XA

Figure 17. Reverse-flow factor, χu(y). +, Urhf/ν × 10−3 = 1.2; ◦, 2.0; 4, 3.5; �, 4.7; �, 6.7. Small
fence. Open symbols, x/XA ≈ 0.55. Closed symbols, x/XA ≈ 1. Wall values taken from figure 11.

is prima facie more plausible. A reduction of length scale as seen in the behaviour of
L′ is consistent with the cessation of pairing observed by Cherry, Hillier & Latour
(1984), whereas the behaviour of L is not. Also, the fluid that becomes part of the
reverse flow in order to supply the entrainment requirement leads to a decrease in the
size of the shear layer structures that are carried downstream of attachment. The in-
terpretation here is that the ‘torn-off’ fluid that is carried upstream is low-momentum
fluid of a scale rather less than that of the structures near attachment. For although
the growth rate of L′ decreases rapidly between x/XA of ∼0.8 and ∼1, to roughly
one-half that further upstream, the surviving outer-flow structures downstream of
attachment as inferred from the overall decrease in L′ are reduced in size by only
about 20%. Consistent with the near constancy of the mean flow neither L′ nor L
change noticeably with Reynolds number.
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The reverse flow fraction, χu, defined for velocity in a similar manner to that for
shear stress described by equation (2), is shown in figure 17 for two positions along
the bubble, one at about x/XA = 0.5 and the other near attachment; χu must of course
tend to the wall value as given by the shear stress measurement, χτw , which is included
in the figure. The apparent variation with Reynolds number in the measurements
near attachment can be entirely attributed to the small variation in the attachment
position and the rapid change in χu with x at this position, as can be seen from the
variation at the wall in figure 11. At the mid position, where a greater dependence
might be expected, the variation in χu is negligible. Figure 18 shows the p.d.f. at the
height near attachment where u2 is a maximum. Structural changes with Reynolds
number might be expected to lead to changes in the p.d.f., but here the summary
measure of the reverse-flow fraction and the p.d.f. itself show no more than a very
slight change.

As is of course well known, the initial part of a mixing layer must scale upon a
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length scale such as the momentum thickness, θo, at separation, and the distance, x,
from separation. (Further downstream, after the initial history is lost, the boundary-
layer scale can be replaced in terms of dimensional dependence by a virtual origin.)
Figure 19 shows the development of the maximum in u2 with x for Urθo/ν = 40
and 74, the first corresponding to Urhf/ν of approximately 26× 103 and only slightly
beyond the upper limit of the other measurements presented here. While there is
some dependence on Reynolds number in figure 19 the variation is fairly small. At
Urθo/ν = 74 the asymptotic level is achieved after about x = 2000θo, a distance
comparable to that at high Reynolds number (Johnson & Hancock 1991). The peak
levels, occurring between x/θo of about 350 and 700, are also much as at high
Reynolds numbers. At Urθo/ν = 40 a longer distance is required to reach the same

asymptotic level. Comparing the level of u2 seen in this figure with that seen in
figure 15 shows that the high level of u2 in the separation bubble arises because of
a fundamental difference between the mixing layer lying above a separation bubble
and an isolated plane mixing layer, one that is dependent on Reynolds number.

4. Further discussion
The mixing layer above the separation bubble entrains turbulent fluid which ‘adds’

turbulence and thereby imposes fluctuating strains on it. The velocity and length scales
of the entrained fluid motion must be proportional to the velocity and length scales
near attachment, and therefore in fixed proportion to the velocity and length scales of
the bubble as a whole. However, it is to be expected that the effect of the fluctuating
strain will depend upon Reynolds number when the latter is sufficiently low, because
the mixing layer structures change significantly at low Reynolds number – as can be
clearly seen in the flow visualizations of RF. Indeed, it was their flow visualization
that led them in their choice of ‘high’ Reynolds number.

If the distance, xo, required for the initial development of the mixing layer above
the separation bubble is comparable to that of an isolated plane mixing layer then
this development length is a significant fraction of the bubble length for the present
Reynolds number range. Taking XA/hf ∼ 25 and xo = 2000θo, and allowing for the
splitter-plate thickness, then it follows that xo/XA ≈ 25(Urhf/ν)

−1/2. So, for Urhf/ν
increasing from 1.6 × 103 to 1.6 × 104 the distance ratio xo/XA decreases from 0.6
to 0.2. As noted earlier in relation to figure 3, this range of xo/XA corresponds with

the range over which the marked increase in u2 occurs, implying that the observed
Reynolds-number dependence is a result of the structures of the early part of the
mixing layer being less susceptible to fluctuating strain than later higher Reynolds
number structures. The excellent flow visualization of Sutton, Devenport & Barkey
Wolf (1990) shows the persistence of highly organized vortical structures at low
Reynolds numbers. A smaller effect of fluctuating strain at low Reynolds numbers is
also seen in a turbulent boundary layer beneath a turbulent free stream, where the
increase in wall shear stress, for example, becomes progressively less as the momentum-
thickness Reynolds number is decreased below about 2000 (Hancock & Bradshaw
1989; Blair 1983a, b and Castro 1984). Here, though, the fluid imposing the fluctuating
rates of strain originates from near attachment, suggesting a feedback mechanism,
dependent on Reynolds number, leading to a mixing layer having characteristics that
are fundamentally different from an unperturbed layer.

Given the dependence on θo it is tempting to think that the development of the
outer-layer part of the bubble would be more properly described in terms of x/θo
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rather than x/XA, in the early part of its development, and such a scaling does indeed

show a tolerably good collapse of the measurements of u2
max onto a single curve

(Hancock 1994). However, a scaling based on x/θo alone, which leads to the single
parameter x/hf(Urhf/ν)

1/2, overlooks the fact that the shear layer is intrinsically also
a function of Urθo/ν or, equivalently, Urhf/ν, and of the scales associated with the
entrained turbulence.

As mentioned in the Introduction, it cannot be supposed that the other stresses
remain in fixed proportion to u2 with change in Reynolds number. HM and CH give
v2 and w2 as roughly equal to 0.7u2, while uv is roughly 0.3u2 for the lower Reynolds
number measurements, and roughly 0.2u2 for the higher. These latter factors imply
that, over the present range, the shear stress increases only slightly with Reynolds
number. Furthermore, the mean momentum balance given by CH (at x/XA = 0.7)
shows that the magnitude of ∂u2/∂x is roughly one-third the magnitude of ∂uv/∂y,
which is roughly one-half of the magnitude of ∂p/∂x. Therefore, the fairly small
contribution from ∂u2/∂x and a comparatively small increase in the shear stress
with Reynolds number would account for a comparatively small change in the mean
flow. Clearly though, all four components of the Reynolds stress tensor need to be
measured in one experiment.

5. Conclusions
The streamwise Reynolds stress u2 in the mixing layer above a two-dimensional

separation bubble increases appreciably with Reynolds number even though there
is little change in the mean flow, reconciling the substantial difference between the
measurements of Ruderich & Fernholz (1986) and Castro & Haque (1987), and
those of Hancock & McCluskey (1997) and Hancock & Castro (1993). The Reynolds
stresses measured by Jaroch & Fernholz (1989) are incorrect and cannot be accounted
for in terms of inadequate flow width or other identified source of error. Conversely,
greater confidence can be attached to the measurements of Ruderich & Fernholz
(1986), and also Castro & Haque (1987) (except near attachment), though it is clear
that their near-wall flows were strongly influenced by end effects, and that the outer
flow may not have been completely free of end effects. The present flow was about
wide enough for end effects to have been insignificant.

The development length of an isolated mixing layer with initial conditions compa-
rable to that of the overlying mixing layer is an appreciable proportion of the bubble
length at low Reynolds numbers. It is argued that the dependence of the Reynolds
stresses in the bulk of the flow is associated with the response of the early structures
of the overlying layer to the fluctuating strain imposed on it by the recirculating flow,
where the response at a low Reynolds number is less than it is at a high Reynolds
number. The characteristics are therefore fundamentally different from an unper-
turbed layer, more so at a high Reynolds number. However, other parameters such as
the reverse-flow factor shows no significant change, and the p.d.f. of the streamwise
velocity fluctuations shows no noticeable change over and above the change in the
fluctuation intensity. Drawing on other measurements, it is suggested that the change
in u2 is larger than the changes in the other Reynolds stresses, accounting for the
lack of change in the mean flow.

The surface shear stress and r.m.s. of the fluctuations, Cf and C ′f , are also strongly

Reynolds-number dependent, with C ′f varying in proportion to Cf . u2 in the outer
part of the flow is not a scale for C ′f . The reverse flow factor, χτw , and the p.d.f. of
the streamwise wall shear stress fluctuations do not change significantly, except in the
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region of the secondary separation where χτw does change; χτw is close to 0.5 at both
attachment and secondary separation locations, independent of Reynolds number.
The reverse-flow factor for the velocity fluctuations, χu, and the normalized p.d.f. are
also independent of Reynolds number, at least over the bulk of the bubble.

Most of the measurements presented here were made during two brief periods
at the Hermann Föttinger Institut. Of the several people at HFI to whom I am
very grateful for their friendship, assistance and encouragement, I wish to express
particular thanks to Professor H. H. Fernholz for his invitation, and to Dr P. Dengel,
M. Kalter, and Dr M. Schober. I am grateful too for the support and assistance given
by my colleague, Professor I. P. Castro. Financial support was provided by Berlin
University, DAAD and the British Council.
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